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ABSTRACT 

We show that a Krylov iterative meihod, preconditioned with DSA, can be used to efficiently compute 
solutions to diffusive problems with discontinuities in material properties. We consider a lumped, linear 
discontinuous discretization of the S N  transport equation with a “partially consistent” DSA 
preconditioner. The Krylov method can be implemented in terms of the original S N  source iteration 
coding with little modification. Results from numerical experiments show that replacing source 
iteration with a preconditioned Krylov method can efficiently solve problems that are virtually 
intractable with accelerated source iteration. 

Key Words: Krylov iterative methods, discrete ordinates, deterministic transport methods, diffusion 

synthetic acceleration 

1 INTRODUCTION 

A spatial discretization of the DSA diffusion equations that is consistent with the discretization of the 
transport equation is usually considered a sufficient conditidn for a DSA method to be unconditionally 
effective [ 1-31. However, the degradation of DSA methods - even fully consistent ones - in problems with 
discontinuities in material properties means that consistency is not enough to guarantee the effectiveness of 
a DSA method. This was first identified in [4] and [5] and revealed as a general deficiency of DSA in a 
paper at this conference. 

For this paper, we follow on the work of Ashby, et al. [6] ,  Brown [7], and Guthrie, et al. [8], where Krylov 
methods preconditioned by DSA replace traditional source iteration on the scalar flux, and extend their 
approach to our linear discontinuous finite element method (DFEM) on unstructured tetrahedral grids. This 
discretization, including a discussion of compatible DSA methods, is presented in Sec. 2. 

We find that using a more powerful iteration, like a Krylov subspace iterative method [9], significantly 
improves convergence for problems in which the convergence of accelerated source iteration degraded in 
the presence of material discontinuities. A nice feature is that the Krylov iterative method can be 
“wrapped around” source iteration code so that only minor changes to the original inner iteration coding is 
necessary. A brief discussion of the formulation and implementation of the preconditioned Krylov iterative 
solution method, including an overview of related work, is presented in Sec. 3 
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We show numerical results for a realistic, unstructured mesh problem with a range of differing material 
properties in Sec. 4. We find that (a) the Krylov method alone, without DSA preconditioning, accelerates 
the transport solution, although not always as well as accelerated source iteration, (b) convergence is vastly 
improved if the Krylov method is preconditioned with DSA, and (c) the Krylov method restores the 
effectiveness of the partially consistent, but inexpensive, simplified WLA (S-WLA) DSA scheme [ 10,111. 
This last observation is also true for the fully consistent DSA method, but the high costs we encountered in 
the fully consistent equations is unacceptable [12,13]. It is particularly costly in problems with material 
discontinuities. Therefore we only consider the less costly S-WLA method for preconditioning the Krylov 
method. 

2 DISCONTINUOUS FINITE ELEMENT DISCRETIZATION ON TETRAHEDRAL MESHES 

We present the linear discontinuous finite element method (DFEM) for the S N  transport equation on 
unstructured tetrahedral meshes, followed by a brief overview of DSA. Further details on the fully 
consistent DSA scheme can be found in [ 131 and details of the partially consistent DSA method can be 
found in [lo] and [ll]. 

2.1 Discontinuous Finite Element Discretization 

The notation used here has the usual meaning [ 141 and we assume cgs units. Given an angular quadrature 
set with N specified nodes and weights { h m ,  wm}, a distributed source of particles Q(r, h) and 
anisotropic scattering of order L, the monoenergetic, steady-state S N  transport equation in the 
three-dimensional domain T E V with boundary r, E aV, is 

Here, xn(h) are the normalized spherical harmonics functions and the scalar flux moments are 
N 

m= I 

The inhomogeneous source is assumed to be isotropic, or Q(r, fi) = Qo(r). 

The linear DFEM discretization is specified by the following variational formulation. It is written in source 
iteration form with iteration index e. Given an angular flux expansion in terms of the four independent 
linear basis functions on a tetrahedral cell T k ,  

4 

$m,k = $ m , j , k L j ( r ) ,  
j=1 

find the linear approximation for each angle A, that satisfies 
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N 

m= 1 

for all linear trial functions Uj, j = 1, . . . , 4 on cell Tk. The Galerkin approximation takes the trial 
functions to be the basis functions Lj, and the above expressions can be evaluated for each of these four 
functions. This gives four equations for the four unknowns $m,j,k on the cell. Before carrying out the 
integrations in (2b), however, we first introduce the discontinuous approximation. Considering a cell IC with 
face p whose outward normal is Ap, the boundary terms $k are defined as 

where I is the cell that shares face p with cell IC. The subscript i(p) denotes three vertices i on a face p of a 
given cell. Simply put, if Ap is on the boundary of the problem domain V ,  then the boundary condition is 
used to define the incoming angular flux for the three points on a face; otherwise the internal or external 
values angular fluxes are used depending on the orientation of the cell face with respect to the quadrature 
direction. The discrete boundary conditions are vacuum, I'(Am) = 0, or I'(6,) = for reflective 
boundary conditions, where m' is determined by the relationship 

6m!=h2,-2ii ( A  0 m . h  ) (2e) 

for h, and A = Ap. In our application, reflection is implemented only for boundary faces aligned parallel 
to the 2, y or z coordinate axes so that the standard quadrature sets we use contain the reflected angles Am1 

that satisfy this relationship. 

The integrals in (2) are evaluated, either analytically or by quadrature approximation, for every cell in the 
mesh. The angular flux, $m,j,k, can then be computed for all vertices j = 1,4  of every cell k, one cell at a 
time over the entire mesh in a predetermined order for every quadrature angle Am. Note that we use a fully 
lumped version of (2). Describing it goes beyond the scope of this work, but suffice it to say that this 
lumping preserves the diffusion limit in thick, diffusive regimes (see [ 151). 

2.2 Source Iteration in Operator Notation 

In this section, we formulate the transport equation in an operator notation to facilitate our presentation. 
We assume that we are using a standard S N  angular discretization. Postponing discussion of the boundary 
conditions, the discretized transport problem reads 

L$ = MSD$ + q. (3) 

We use an N-point quadrature and there Nc spatial cells in the problem. Let $ be the vector of angular 
fluxes for every angle and every vertex (four of them) in each cell, so $ is of length n = 4NNc. The vector 
q is source vector also of length n. The (n x n) operator L represents the discretized streaming and 
removal operator for all angles. The vector q5 contains the Nm (this number depends on L and the particular 
quadrature) of scalar flux moments at the four vertices of each cell, so that is is of length t = 4NmNc. The 
operator D maps the vector $ onto $, q5 = D$. The operator M maps a vector of scalar flux moments 
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onto angular fluxes (note that + # M4). These are in general rectangular operators, D being (t x n) and 
M is (n  x t ) .  In, the standard S N  scattering treatment D = MTW,  where W is an (n x n) diagonal 
operator of the quadrature weights distributed to all vertices of all the cells. The operator S is a (t x t )  
diagonal operator of the scattering cross sections on the cells, distributed to all vertices on all cells. 

Rearranging (3) and introducing an iteration index e, we get traditional source (or Richardson) iteration: 

with the boundary conditions for +: 

The problem boundary I? = ro U rR has been separated into ro, the part of the boundary with incoming 
source or a vacuum conditions, and the remaining part, rR, the specular reflection part. 

We first discuss the boundary conditions on Po, (5a) (see also [16]). Because the problem is linear, we first 
initialize a source b by solving the problem 

Lb = q, Bob = 9, 

for b, whose physical interpretation is the uncollided flux. Then the iteration (4) can be computed 
according to 

= L-1MS4e + b, 
4e+i = D+e+i 

> 

Once the source b is calculated, homogeneous, or vacuum, boundary conditions are applied during the 
iterations. 

Reflection is implemented by modifying the operator L. We treat reflective conditions implicitly, so no 
special angular SN sweep ordering is necessary. This greatly simplifies the implementation with no 
significant extra computations since the solution is calculated iteratively anyway. We split the operator L 
into two parts, L = LO + LR, where the second part, La, represents the coupling terms on the reflective 
boundary faces based on (2e). All other spatial and angular coupling terms remain in the first part, LO. This 
enables us to “lag” the angular fluxes on the reflective boundary faces and the iteration (7) is modified to be 

where b is again computed by solving (6). Let the vector +R consist only of the angular fluxes on the points 
of reflective boundary faces. The operator P maps $R into the full length vector representation +. The 
vector IJQ is of length v = NR ‘ N ,  where NR is the total number of spatial points on the reflective 
boundary faces of the problem, so that P is a (n x v) operator. This enables us to use 4 as the primary 
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working vector and save only the vector +R for subsequent iterations. A complete description, then, in 
operator notation describing precisely how source iteration is implemented in our transport code is 

2.3 DSA Methods 

We briefly review the DSA method to put it in context. We ignore reflective boundary conditions for 
purposes of discussion because we can write the iteration for the scalar flux 

where T = DL-lM and b = DL-lq. If 4 is the exact solution to (10) then the error fe+l = (4 - q5e+1) 
satisfies 

(1 1) 

- q5e) is the residual and I is the (t x t )  identity operator. Equation (1 1) suggests that we 

( I  - TS)f[+l = TSre,  

where re = 
can use an approximation to the operator ( I  - TS)- lTS to estimate the error and correct the current 
iterate. This leads to a more efficient iteration if the approximate operator is relatively easy to setup and 
invert and if the approximate operator adequately reduces the spectral radius. 

I 

. 

In the case of DSA, the approximate operator involves the diffusion operator, C .  This is an appropriate 
choice because the diffusion equation is the asymptotic limit of the transport operator in highly diffusive 
regimes [17,18]. This is just the situation for which we need acceleration. The diffusion operator is 
effective because it can represent the errors that are poorly attenuated by source iteration. Whether the 
diffusion operator can be inverted easily and result in a more efficient algorithm depends on the spatial 
discretization of both the transport equation and the diffusion equation. Introducing an intermediate 
correction step in the source iteration algorithm, the DSA algorithm is 

The operator C-l represents the “action” of the diffusion operator on the quantity S (4e+1/2 - 
Analytically the operator C is the diffusion equation and C-l is simply its inverse. In the discrete case, 
however, C-l not only represents the inverse of spatially discretized diffusion equation because certain 
there may be certain projection and interpolation operations that are needed as well. It is the properties of 
all the computations represented by the C-l operator that determines how effective, efficient and robust 
the overall DSA algorithm will be in practice. Note that additional operations are necessary to treat 
reflective boundary conditions. For our purposes here, we consider only is the partially consistent scheme, 
the S-WLA method [lo, 131. A method that fully consistent with our DFEM spatial discretization is simply 
too costly to be used in general implementations, especially considering the way its effectiveness is 
degraded in problems with discontinuous material properties. 
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3 KRYLOV SUBSPACE ITERATIVE METHODS 

We now describe the implementation of the Krylov iterative methods, starting from the source iteration that 
is already implemented in our transport code. The previous work with Krylov iterative methods for 
transport applications that we find most relevant is briefly reviewed. 

3.1 Reformulating Source Iteration 

Source iteration is better known mathematically as a stationary, one-step Richardson iteration. It is the 
simplest possible iteration. We wish to replace source iteration with another, more powerful, iteration, like 
a Krylov subspace iterative method. To do so, first we write source iteration in a form that we can use with 
another iterative method. 

We postpone discussion of reflective boundary conditions. We start with (7) and assume that we have 
already calculated the source term b as previously discussed. Eliminate iteration indices and collapsing the 
iteration into a single expression for the scalar flux moments gives 

(It - DL-'MS) 4 = Db, (13) 

where Ik is a (k x k) identity operator. 

We now account for reflective boundary conditions, working with the operators LO' and LR to minimize 
additions and changes to a code for which source iteration has already been implemented and verified. So, 
we augment the working vector 4 with the vector of angular fluxes on the boundary, $R: 

6= [;J. (14) 

The source term is similarly augmented, b = [Db 0]*. We again collapse the iteration in (8) into a single 
expression by writing it the augmented form 

We can eliminate the iteration index and bring things from the right to the left hand side to find an 
expression in the same form as (13): 

where 

Correspondence of the remaining operators with the previous augmented form can be deduced easily by 
comparison. 

It is as simple as that. Existing coding is used to compute the action of the D ,  M ,  S and LL1 operators at 
every Kiylov iteration. Not that a more powerful iterative method has to utilize, or at least make better use 
of, information that is available from one or more previous iterates. Some additional storage and 
computational overhead is needed to implement an advanced iterative strategy. The expectation is that any 
extra costs are outweighed by an improvement in the iterative convergence rate. 
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3.2 Preconditioning with DSA 

We show that the DSA algorithm is equivalent to a preconditioning the transport operator as follows. S e e  
[19] for a related discussion. First, consider that Richardson iteration for some linear system Ax = y is 
simply 

= xe + re = ze + y - Axe = ( I  - A )  xe + y. (17) 0 
Comparing this with (lo), we find the operator corresponding to source iteration is A = ( I  - T S ) .  
Richardson iteration for the (left) preconditioned linear system M-lAx = M - l y  is 

, e + l =  xe + M-lre = xe + m-1 (y -  AX^) = ( I  - M - ~ A )  xe + ~ - l y .  (18) 

Recall that preconditioning is effective if A 4 - l  is in some sense an approximation to A-l .  The 
preconditioner may be computed explicitly in advance or it may involve the solution of another linear 
system, M w  =. z, for example, which might need to be computed iteratively or approximately at every 
iteration. The overall solution can be computed more efficiently only if the preconditioning system can be 
computed relatively easily. 

Collapsing the DSA algorithm (12) into a single operation gives 

4e+1 = T&he + b + C-lS ( T S C ~ ~  + b - "> 
= [I  + ( I  + CIS) ( T S  - I ) ]  q5e + ( I  + C I S )  b 

which, by comparison with (18) shows that the DSA algorithm is just Richardson iteration for the 
preconditioned system 

(20) 
We can see that ( I  + C I S )  is in fact an approximation to the inverse of ( I  - T S )  as follows. The 
computation of the error estimate in (12), fe+li2 = C-lS (q5e+1/2 - 4e) , is an approximation to the error 
equation 

(21) 

( I  + C I S )  ( I  - T S )  q5 = ( I  + C I S )  b. 

( I  - TS)fe+lj2 = TSre, 

C I S  M ( I  - TS)-'TS = ( I  - T S ) - l -  I ,  

where f e + l / 2  = (4 - @+1/2), re = (q$l+1/2 - 4 e ), and 4 is the exact solution to (10). Examining (12) it is 
evident that 

(22) 
or, in other words, 

( I  + C I S )  x ( I  - T S ) - l .  

3.3 Previous Work 

There has been a fair amount of work during the past decade in applying Krylov methods to transport 
problems in various contexts (see [20-291. For a definition and description of Krylov subspace and other 
iterative methods, see [9]. 

The ideas most influential on the work we are presenting here those of Ashby, et al., [6,16], Brown [7], and 
Guthrie, et al. [8], These papers show similar numerical results with similar conclusions regarding the 
effectiveness and efficiency of GMRES preconditioned with DSA. Ashby, et a1.[16], and Brown [7], put 
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emphasis on the analysis of DSA as a preconditioner and the linear algebraic formalism that facilitates their 
analysis. Guthrie, et al. [8] focused primarily on how to implement the iterative solution in terms of 
transport sweeps and give an enlightening discussion on the optimality of GMRES. 

In [6], the authors considered an inconsistent DSA scheme for linear discontinuous discretizations in one 
dimension, whose effectiveness degraded in the presence of two very different materials, unlike the 
consistent method to which it was compared [6]. While this DSA methods was totally ineffective in 
accelerating source iteration, convergence improved significantly when it was applied as a preconditioner 
to GMRES. Their work actually presaged the situation in which we now find ourselves. They state in their 
conclusion, “These results have possible implications for problems in higher spatial dimensions, for which 
a consistent preconditioner is difficult to obtain-andor impractical to apply” [6]. Furthermore, Brown 
points out in his work on DSA for diamond-difference methods in 3D orthogonal grids that if the diffusion 
equation in the DSA algorithm isn’t solved exactly or some other approximations are made, b b . .  .the use of 
these methods in three dimensions will be crucial to the overall usefulness of DSA in 3-D problems,” 
refemng to b b . .  , more powerful iterative methods such as Bi-CGSTAB . . . ” [7]. Indeed, this is the case for 
our linear DFEM S N  transport discretization. The FCDSA algorithm is prohibitively expensive to employ 
and only the partially consistent S-WLA DSA method remains feasible for general purpose. This is 
because when used as a preconditioner to a Krylov iterative method, it remains effective even the presence 
of material discontinuities. The overall solution can be computed efficiently because the S-WLA method is 
inexpensive, precisely because of the approximations made that make it only partially consistent. 

3.4 Implementation and Convergence of Krylov Subspace Iterative Methods 

We now make some brief remarks on the choice of Krylov iterative method, convergence of the Krylov 
methods, and the implementation of the Krylov method in the transport code AttilaV2, indicating how the 
structure and properties of the transport operator I - T S  influences these issues. 

3.4.1 Choosing a Krylov iterative method. 

The obvious iterative method to choose when an operator is s.p.d. (symmetric, positive definite) is the 
method of conjugate gradients (CG). Symmetrization of the scalar flux formulation is possible, in the sense 
that it is possible to define an inner product for which the operator is symmetric [24,28]. This is all that is 
needed for isotropic scattering. The operator in (13) or (16) is a discrete form of integral equation for the 
vector of scalar flux moments. By examining the continuous form of the integral equation tor anisotropic 
scattering, Santandrea and Sanchez very cleverly define an inner product and preconditioner that makes the 
preconditioned operator s.p.d. [24]. 

This implies we might use CG as an iterative solution technique, provided the spatial discretization does 
not induce a nonsymmetric operator. We found that our LDFEM discretization on tetrahedra does in fact 
makes the scalar flux formulation nonsymmetric, even for isotropic scattering with constant material 
properties. Furthermore, two potential DSA schemes that are compatible with that discretization, the fully 
consistent, discontinuous diffusion discretization, and the partially consistent, S-WLA method, are either 
nonsymmetric, or symmetric and indefinite. So, we can’t be guaranteed that (preconditioned) CG will 
converge under these circumstances and we have use a nonsymmetric Krylov iteration like GMRES. 
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3.4.2 A few words about convergence. 

To limit memory use, we we use the restarted version of GMRES, GMRES(rn), which restarts the iteration 
every rn iterations. We have found that the transport operator, while nonsymmetric, is positive definite in 
which case restarted GMRES is guaranteed to converge [9,27]. This is because the source iteration matrix 
has spectral radius p(TS)  < 1 and therefore 0 < p(I  - T S )  5 1. 

We have also found that our operator is non-normal as well as being nonsymmetric. This can complicate 
the prediction and analysis of convergence [27,30]. The convergence behavior of simple iterative methods 
like Richardson iteration or Krylov iterative methods for symmetric systems is well-understood in terms of 
the eigenvalues of the linear system. In contrast, there is very little that can be done to accurately predict or 
estimate the convergence of nonsymmetric Krylov iterative methods, except under special circumstances. 
Even if available the estimated bounds may not be sharp. We do not consider this lack of a priori 
knowledge about convergence to be restrictive because our experience so far indicates that the 
nonsymmetric Krylov methods GMRES and BiCGStab, for example, are very robust for this application. 

We can, however, make a few statements about convergence. In exact arithmetic, GMRES will converge in 
a number of iterations equal to the degree of the minimal polynomial of A, denoted d(A),  except for some 
very special cases. The minimal polynomial is the unique monic polynomial that satisfies pd(A) = 0. It 
can be seen that such a polynomial will, generally speaking, have low degree if the eigenvalues of A are 
non-defective and of high multiplicity, The Krylov subspace from which the solution at iteration p ,  zp, is 
chosen is Km(A, T O )  = span(r0, Aro, A2ro,. . .Am-’ TO} .  Obviously, the maximum dimension that the 
Krylov subspace can attain is the degree of the minimal polynomial. When rn = d(A) the Arnoldi process, 
which computes an orthogonal basis for &(A, T O )  halts and GMRES suffers what is called a “lucky 
breakdown”, “lucky” because the solution has converged at that point [9]. In finite precision arithmetic, 
however, the eigenvalues are perturbed such that they form small clusters of distinct eigenvalues about the 
exact values and the degree of the minimal polynomial will be larger than it would be otherwise. 
Nonetheless, GMRES still has the opportunity to converge quickly if the eigenvalues make up a small 
number of clusters. This is often observed in practice [30]. 

Now, if the matrix A is normal ( A  has a complete orthonormal decomposition A = Q*AQ or, 
equivalently, AAT = ATA) then its spectrum will be insensitive to perturbations, or well-conditioned, 
and the effects of finite precision arithmetic should be nominal. In that case, GMRES should converge in 
approximately d(A) iterations. Non-normality does not imply that the spectrum of A is ill-conditioned, 
although an operator whose spectrum is ill-conditioned has to be non-normal. If a GMRES is applied to a 
non-normal matrix and it converges in the number of iterations predicted by d(A),  then everything is as it 
should be, and the spectrum is probably well-conditioned. However, when GMRES does not converge in 
the predicted number of iterations when the matrix is non-normal, then it must be that the spectrum is 
ill-conditioned. 

We have attempted to explore the properties of the transport operator by explicitly constructing I - T S  for 
some simple, homogeneous problems, including anisotropic scattering, on a few very small meshes. 
Having found the operator is non-normal, GMRES still converged within one or two iterations of the 
degree of the minimal polynomial, which was typically quite small, on the order of 10-15. This indicates 
that the eigenvalues are well-conditioned and GMRES has the opportunity to converge quickly. 
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A number of recent texts provide further information on the theoretical background behind Krylov iterative 
methods; see [9,27], for example. 

3.4.3 Applying DSA as a preconditioner. 

The preconditioned linear system, in the form given in (20), is what we solve with a Krylov iterative 
method. Assume for the moment that we are solving the preconditioned linear system A4-l Aa: = M-ly.  
At every iteration, the Krylov method supplies a vector v to which the linear system is applied, that is, the 
vector z = Av is computed and returned to the Krylov solver. Subsequently, the linear system M w  = z is 
“solved” and the vector w is returned to the solver. This allows us to compute the “action” of the 
preconditioner on the vector z without the inverse matrix M-l being available. 

However, we do not actually use the preconditioned version of the Krylov algorithm where we would have 
to first apply the linear system to v, z = ( I  - TS)v ,  and subsequently compute the action of the 
preconditioner on z, w = ( I  + C-lS)z, as we would if DSA were being used as a preconditioner. Instead, 
we use the unpreconditioned version of the Krylov method. At every iteration we set c,be = v, compute the 
sequence of operations shown in the DSA algorithm, Eqs. 12, with the original source iteration code. We 
then return w = v - c,be+’ to the Krylov solver. Collapsing the solution process into a single operation 
shows that this approach is fully equivalent to preconditioning in the usual sense but requires much less 
code modification because the Krylov solver can just be “wrapped around” the source iteration code with 
just the addition of the last step w = v - c,b[+l. 

3.4.4 Inner-outer iterations. 

The S-WLA DSA equations involve solving an s.p.d. linear system (the linear continuous finite element 
discretization of the diffusion equation) with conjugate gradients (CG). We would like to save 
computational effort in the combined inner-outer iteration by varying the tolerance of the inner iteration, 
which in this case is the CG iteration, without affecting the accuracy or convergence of the outer iteration, 
which in this case is a Krylov subspace method. Recently, it was observed in [31] that the inner iterations 
need to be computed to a strict convergence tolerance in the early part of the outer Krylov iterations. The 
tolerance can then be relaxed as the outer iteration proceeds. We set the inner tolerance in inverse 
proportion to the norm of the outer residual vector in accordance with [31]. This approach has recently 
been understood and justified theoretically [32]. If restarting, however, the inner solution should again be. 
computed with high precision and the tolerance subsequently relaxed. The inner tolerance for the DSA CG 
solution at outer iteration I C ,  with residual r k ,  is set according to 

$6 if IC modm = 0 .={ $ max(6, min(1, E/min( l l r k I ( 2 , l ) ) )  otherwise 

where E is the tolerance for the outer iteration. We have found the factor of 1/10 to be conservative in that 
this choice did not affect convergence or accuracy in any of the problems we have tried. 

4 NUMERICAL RESULTS 

In this section we compare the Krylov iterations to source (Richardson) iterations, with and without 
preconditioning using the partially consistent S-WLA DSA method. The results are computed using 

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 10119 



Krylov Methods for S N  Problems with Material Discontinuities 

AttilaV2 [33] for a realistic, two-material “duct” problem. They illustrate both how computational effort 
depends on scattering ratio and the total cross section in the two regions in the problem. 

We found through experimentation on a wide variety of problems that the reasonably-sized restart 
parameter of m = 10 did not reduce the outer convergence rate compared to higher values. There was 
some slight sensitivity for values smaller than this. 

We refer to traditional source iteration that is accelerated by the S-WLA DSA method simply as “ASI”. 
The Krylov method approach is simply called “PGMRES”, which is GMRES( 10) preconditioned with the 
S-WLA algorithm. If acceleration or a preconditioner are not used to accelerate the convergence of these 
iterations, respectively, then they are referred to as “SI” or “GMRES”. 

The following stopping criterion is used in all results presented here: 

or 2000 iterations. The CG convergence tolerance for the DSA method is fixed to only for the source 
iteration solutions. The strategy discussed in Sec. 3.4 is used for the PGMRES results. Initial scalar fluxes 
are zero and we use a triangular, S4 Chebyshev-Legendre quadrature. 

The problem consists of a reflected quarter-cylinder, 25 cm in radius and 50 cm long. The “thin” duct 
region is 5 cm in radius. It is surrounded by a “thick” region and bends around a central disc of thick 
material. There is a unit isotropic boundary source incident on the left face of the duct. Vacuum boundary 
conditions are specified the outer surfaces. The values of the total cross sections in the thin region, at,l, and 
the thick region, ~ , 2 ,  as well as the scattering ratio c, are varied to examine the effect of material 
heterogeneities in a realistic problem. An isotropic source of strength 1.0-6 particles/cm3 is distributed 
throughout the problem to help smooth the solution. The unstructured, tetrahedral mesh is illustrated in 
Figs. 1. It consists of 31,481 cells. 

The number of iterations and the measured number of floating point operations (FLOP) on a single SGI 
Origin 2000 250 MHz CPU are tabulated below. The results for AS1 and PGMRES on the Tet Mesh are 
shown in Tables I and II. These results may be compared to the results for SI and GMRES (no DSA 
accleration or preconditioning) on the Tet Mesh shown in Tables III and IV. Each table contains data for 
both solution methods for various values of thin (at,l) and thick ( 0 ~ )  region cross sections and scattering 
ratios c = 1 .OOOO, 0.9999,0.999,0.99,0.9. 

The most apparent and important observation is that PGMRES significantly reduces the number of 
iterations needed for convergence compared to ASI. This improvement in iteration count offsets any extra 
computational effort. The savings in compuational effort compares more favorably as the scattering ratio c 
approaches 1.0 and S-WLA becomes less effective. While PGMRES needs less computational effort even 
for the lowest value of c = 0.9 considered here, there is most likely going to be a point at which c is small 
enough that ASI, will compute a solution with less effort because of its lower per iteration cost. However, 
as c approaches zero DSA isn’t really needed anyway and unaccelerated source iteration is perfectly 
adequate. It is notable that the results that GMRES alone, without the S-WLA preconditioner, does in fact 
accelerate the transport iterations. In some cases it performs as well as DSA-accelerated source iteration, 
although we cannot conclude that this will be true in general. The results reported here are encouraging, 
especially since PGMRES outperforms source iteration when material discontinuities are not present. 
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Figure 1. The unstructured, tetrahedral mesh used for the numerical computations. The total cross section 
in the lightly-shaded, “thin” duct region is at,2 and at,l in the darker, “thick” surrounding region. 

Finally, as shown in Table V the additional memory required for GMRES(10) is not unreasonable, only 
about 50% greater than what is needed for the source iteration implementation. 

5 CONCLUSIONS 

A Krylov subspace iterative method can significantly improve the efficiency of SN transport calculations in 
problems for which source iteration accelerated with DSA schemes will be ineffective. Such problems have 
discontinuities in material properties that render even fully consistent methods ineffective. Most 
importantly, our results show that a partially consistent DSA method like the S-WLA method can be used 
as an efficient preconditioner for a Krylov iterative method, despite being ineffective as an acceleration 
scheme for traditional source iteration. The rate of convergence is substantially faster when the Krylov 
iteration is preconditioned with the S-WLA DSA method, relative to either source iteration accelerated 
with S-WLA, or GMRES without preconditioning. 

Computational measurements indicate that the extra computational and storage overhead associated with 
the GMRES Krylov iterative method is acceptable given that these problems may not even converge in a 
reasonable amount of time using accelerated source iteration. 

Although we only considered steady-state, one-group problems with isotropic scattering, we successfully 
tested this approach on problems with anisotropic scattering and on multigroup, criticality eigenvalue 
problems. We found that preconditioned Krylov methods outperformed accelerated source iteration in 
almost all the problems we experimented with. We feel that Krylov iterative methods are well-suited for 
calculating within-group solutions in transport codes that are intended for general purpose use. 

Our conclusions could change if we consider a parallel implementation. However, as long as the SN sweep 
algorithms can be implemented efficiently then there should be no reason why we wouldn’t see similar 
performance in parallel applications. 
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Table I. Computational results for the Tet Mesh, Number of iterations are tabulated for total cross sections 
at,l and a t ,2  (cm-l) and a range of scattering ratio c. 
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a b l e  II. Computational results for the Tet Mesh. FLOP counts (in billions) are tabulated for total cross 
sections ot,l and ot,2 (cm-l) and a range of scattering ratio c. 
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Table In. Computational results for the Tet Mesh without S-WLA preconditioning or accleration. Number 
of iterations are tabulated for total cross sections ut,l and ut,2 (cm-l) and a range of scattering ratio c. An 
entry “dc” indicates that the problem did not converge in 2000 iterations. 
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Table IV. Computational results for the Tet Mesh without S-WLA preconditioning or accleration. FLOP 
counts (in billions) are tabulated for total cross sections o t ,1  and ot,2 (cm-l) and a range of scattering ratio 
c. An entry ccn/c” indicates that the problem did not converge in 2000 iterations. 
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PGMRES GMRES AS1 SI I l l  
Table V. Approximate memory requirements (MB) measured on a dedicated SGI Origin 2000 single pro- 
cessor. 
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